Illuminating Spindle Convex Bodies and Minimizing the Volume of Spherical Sets of Constant Width
نویسنده
چکیده
A subset of the d-dimensional Euclidean space having nonempty interior is called a spindle convex body if it is the intersection of (finitely or infinitely many) congruent d-dimensional closed balls. The spindle convex body is called a “fat” one, if it contains the centers of its generating balls. The core part of this paper is an extension of Schramm’s theorem and its proof on illuminating convex bodies of constant width to the family of “fat” spindle convex bodies. Also, this leads to the spherical analog of the well-known Blaschke–Lebesgue problem.
منابع مشابه
Intrinsic Volumes and Polar Sets in Spherical Space
For a convex body of given volume in spherical space, the total invariant measure of hitting great subspheres becomes minimal, equivalently the volume of the polar body becomes maximal, if and only if the body is a spherical cap. This result can be considered as a spherical counterpart of two Euclidean inequalities, the Urysohn inequality connecting mean width and volume, and the Blaschke-Santa...
متن کاملAnalytic parametrization and volume minimization of three dimensional bodies of constant width
We present a complete analytic parametrization of constant width bodies in dimension 3 based on the median surface: more precisely, we define a bijection between some space of functions and constant width bodies. We compute simple geometrical quantities like the volume and the surface area in terms of those functions. As a corollary we give a new algebraic proof of Blaschke’s formula. Finally, ...
متن کاملThe Blaschke-Lebesgue problem for constant width bodies of revolution
We prove that among all constant width bodies of revolution, the minimum of the ratio of the volume to the cubed width is attained by the constant width body obtained by rotation of the Reuleaux triangle about an axis of symmetry. 2000 MSC: 52A15 Introduction The width of a convex body B in n-dimensional Euclidean space in the direction ~u is the distance between the two supporting planes of B ...
متن کاملNakajima’s Problem: Convex Bodies of Constant Width and Constant Brightness
For a convex body K ⊂ Rn, the kth projection function of K assigns to any k-dimensional linear subspace of Rn the k-volume of the orthogonal projection of K to that subspace. Let K and K0 be convex bodies in Rn, and let K0 be centrally symmetric and satisfy a weak regularity and curvature condition (which includes all K0 with ∂K0 of class C2 with positive radii of curvature). Assume that K and ...
متن کاملThermodynamic Properties for Argon
An analytical equation of state is applied to calculate the thermodynamic properties for argon. Theequation of state is that of Song and Mason. It is based on a statistical-mechanical perturbation theory ofhard convex bodies and can be written as fifth-order polynomial in the density. There exist three temperaturedependentparameters: the second virial coefficient, an effective molecular volume,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 47 شماره
صفحات -
تاریخ انتشار 2012